Expansivity and strong structural stability for composition operators on $$L^p$$ spaces

نویسندگان

چکیده

Abstract In this note, we investigate the two notions of expansivity and strong structural stability for composition operators on $$L^p$$ L p spaces, $$1\le p < \infty$$ 1 ≤ < ∞ . Necessary sufficient conditions such to be expansive are provided, both in general dissipative case. We also show that, setting, shadowing property implies prove that these equivalent under extra hypothesis positive expansivity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

wavelets, modulation spaces and pseudidifferential operators

مبحث تحلیل زمان-فرکانسی سیگنالها یکی از مهمترین زمینه های مورد بررسی پژوهشگران علوم ÷ایه کاربردی و فنی مهندسی میباشد.در این پایان نامه فضاهای مدولاسیون به عنوان زمینه اصلی این بررسی ها معرفی گردیده اند و نتایج جدیدی که در حوزه های مختلف ریاضی،فیزیک و مهندسی کاربرداساسی و فراوانی دارند استوار و بیان شده اند.به ویژه در این پایان نامه به بررسی و یافتن مقادیر ویژه عملگر های شبه دیفرانسیل با سمبل در...

Norms of Positive Operators on LP-Spaces

Let 0 < T: LP(Y, v) -+ Lq(X, ) be a positive linear operator and let HITIP ,q denote its operator norm. In this paper a method is given to compute 1Tllp, q exactly or to bound 11Tllp q from above. As an application the exact norm 11VIlp,q of the Volterra operator Vf(x) = fo f(t)dt is computed.

متن کامل

Composition Operators on Small Spaces

We show that if a small holomorphic Sobolev space on the unit disk is not just small but very small, then a trivial necessary condition is also sufficient for a composition operator to be bounded. A similar result for holomorphic Lipschitz spaces is also obtained. These results may be viewed as boundedness analogues of Shapiro’s theorem concerning compact composition operators on small spaces. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Banach Journal of Mathematical Analysis

سال: 2022

ISSN: ['1735-8787', '2662-2033']

DOI: https://doi.org/10.1007/s43037-022-00196-4